Skip to main content

Error Monitoring & AI-Powered Auto-Fix Strategy

Comprehensive error monitoring strategy with AI integration for automated ticket creation and PR generation.

Executive Summary

Recommended Solution: Sentry with AI integration for:

  • ✅ Error tracking and monitoring
  • ✅ Automated GitHub issue creation
  • ✅ AI-powered code fixes
  • ✅ Automated PR generation

Tool Comparison

Pros:

  • ✅ Excellent API for programmatic access
  • ✅ Webhook support for real-time error notifications
  • ✅ Built-in GitHub integration
  • ✅ Rich error context (stack traces, breadcrumbs, user context)
  • ✅ Works across backend, web, and mobile
  • ✅ Performance monitoring included
  • ✅ Session replay (paid feature)
  • ✅ Great AI integration capabilities
  • ✅ Free tier: 5,000 events/month

Cons:

  • ⚠️ Can get expensive at scale
  • ⚠️ Session replay requires paid plan

Best For:

  • Error tracking with AI integration
  • Automated workflows
  • Multi-platform monitoring
  • Performance monitoring

Pricing: Free tier → $26/month (Team) → Custom (Business)

LogRocket

Pros:

  • ✅ Excellent session replay
  • ✅ Great for frontend debugging
  • ✅ User session recordings
  • ✅ Network request monitoring

Cons:

  • ❌ Limited API for automation
  • ❌ Less suitable for backend error tracking
  • ❌ No built-in GitHub integration
  • ❌ More expensive
  • ❌ Harder to integrate with AI workflows

Best For:

  • Frontend-focused debugging
  • User session analysis
  • Visual debugging

Pricing: $99/month (Starter) → $249/month (Professional)

Application Insights (Azure)

Pros:

  • ✅ Native Azure integration
  • ✅ Good .NET support
  • ✅ AI-powered insights

Cons:

  • ❌ You're using AWS, not Azure
  • ❌ Less flexible for custom workflows
  • ❌ Limited GitHub integration

Best For:

  • Azure-hosted applications
  • Microsoft ecosystem

Pricing: Pay-as-you-go

Datadog

Pros:

  • ✅ Full observability platform
  • ✅ Excellent API
  • ✅ Great for infrastructure monitoring

Cons:

  • ❌ Expensive
  • ❌ Overkill for error monitoring alone
  • ❌ Complex setup

Best For:

  • Full-stack observability
  • Large-scale applications

Pricing: $31/month (Pro) → Custom (Enterprise)

Rollbar

Pros:

  • ✅ Good API
  • ✅ GitHub integration
  • ✅ Simple setup

Cons:

  • ❌ Less feature-rich than Sentry
  • ❌ Smaller ecosystem

Best For:

  • Simple error tracking
  • Small teams

Pricing: Free → $19/month → Custom

Recommendation: Sentry

Why Sentry is the best choice for your use case:

  1. Excellent API - Perfect for AI integration
  2. Webhook Support - Real-time error notifications
  3. GitHub Integration - Built-in issue creation
  4. Rich Context - Stack traces, breadcrumbs, user info
  5. Multi-Platform - Backend (.NET), Web (React), Mobile (React Native)
  6. AI-Friendly - Easy to extract error data for AI processing

AI Integration Architecture

Workflow Overview

Error Occurs

Sentry Captures Error

Webhook Triggers → GitHub Actions / AWS Lambda

AI Analyzes Error (OpenAI/Anthropic)

Create GitHub Issue (with AI analysis)

AI Generates Fix (with code changes)

Create Pull Request (with fix)

Review & Merge

Components

  1. Sentry - Error capture and monitoring
  2. Webhook Handler - Receives Sentry webhooks (GitHub Actions or AWS Lambda)
  3. AI Service - Analyzes errors and generates fixes (OpenAI/Anthropic)
  4. GitHub Integration - Creates issues and PRs
  5. Code Generator - Applies AI-generated fixes

Implementation Plan

Phase 1: Sentry Setup (Week 1)

Backend (.NET)

  1. Install Sentry SDK:
dotnet add package Sentry.AspNetCore
dotnet add package Sentry.EntityFramework
  1. Configure Sentry in Program.cs:
using Sentry;

builder.WebHost.UseSentry(options =>
{
options.Dsn = builder.Configuration["Sentry:Dsn"];
options.Environment = builder.Environment.EnvironmentName;
options.TracesSampleRate = builder.Environment.IsProduction() ? 0.1 : 1.0;
options.SendDefaultPii = false; // Don't send PII

// Add user context
options.BeforeSend = (sentryEvent) =>
{
// Add custom context
sentryEvent.SetTag("service", "api");
return sentryEvent;
};
});

// Add Sentry to logging
builder.Logging.AddSentry();
  1. Add to appsettings.json:
{
"Sentry": {
"Dsn": "https://your-dsn@sentry.io/project-id",
"Environment": "Development",
"TracesSampleRate": 1.0
}
}
  1. Add Sentry middleware:
app.UseSentryTracing();

Web App (React/Next.js)

  1. Install Sentry:
npm install @sentry/nextjs
  1. Initialize Sentry:
// sentry.client.config.ts
import * as Sentry from "@sentry/nextjs";

Sentry.init({
dsn: process.env.NEXT_PUBLIC_SENTRY_DSN,
environment: process.env.NODE_ENV,
tracesSampleRate: 1.0,
beforeSend(event, hint) {
// Add custom context
event.tags = {{ ...event.tags, service: "web" }};
return event;
},
});

Mobile App (React Native)

  1. Install Sentry:
npm install @sentry/react-native
  1. Initialize Sentry:
import * as Sentry from "@sentry/react-native";

Sentry.init({
dsn: process.env.SENTRY_DSN,
environment: __DEV__ ? "development" : "production",
tracesSampleRate: 1.0,
});

Phase 2: Webhook Setup (Week 1-2)

Create .github/workflows/sentry-webhook.yml:

name: Sentry Error Handler

on:
repository_dispatch:
types: [sentry-error]

jobs:
handle-error:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3

- name: Setup .NET
uses: actions/setup-dotnet@v3
with:
dotnet-version: '9.0.x'

- name: Analyze Error with AI
id: analyze
run: |
# Call AI service to analyze error
# Returns: error_summary, suggested_fix, code_changes

- name: Create GitHub Issue
uses: actions/github-script@v6
with:
script: |
github.rest.issues.create({
owner: context.repo.owner,
repo: context.repo.repo,
title: `[Auto] ${{steps.analyze.outputs.error_summary}}`,
body: `## Error Details
${{steps.analyze.outputs.error_details}}

## Suggested Fix
${{steps.analyze.outputs.suggested_fix}}

## Code Changes
\`\`\`
${{steps.analyze.outputs.code_changes}}
\`\`\`
`,
labels: ['bug', 'auto-generated', 'ai-suggested']
});

- name: Create Pull Request
if: steps.analyze.outputs.has_fix == 'true'
run: |
# Create PR with AI-generated fix

Option B: AWS Lambda (Alternative)

Create Lambda function to handle Sentry webhooks:

// SentryWebhookHandler.cs
public class SentryWebhookHandler
{
public async Task<APIGatewayProxyResponse> Handle(SentryWebhookEvent evt)
{
// Analyze error with AI
var analysis = await AnalyzeErrorWithAI(evt);

// Create GitHub issue
await CreateGitHubIssue(analysis);

// Create PR if fix available
if (analysis.HasFix)
{
await CreatePullRequest(analysis);
}

return new APIGatewayProxyResponse { StatusCode = 200 };
}
}

Phase 3: AI Integration (Week 2-3)

AI Error Analysis Service

// Services/AIErrorAnalysisService.cs
public class AIErrorAnalysisService
{
private readonly IOpenAIService _openAI;

public async Task<ErrorAnalysis> AnalyzeErrorAsync(SentryEvent sentryEvent)
{
var prompt = BuildAnalysisPrompt(sentryEvent);
var response = await _openAI.ChatCompletionAsync(new ChatCompletionRequest
{
Model = "gpt-4",
Messages = new[]
{
new ChatMessage
{
Role = "system",
Content = @"You are an expert .NET developer. Analyze errors and suggest fixes.
Return JSON with: error_summary, root_cause, suggested_fix, code_changes, confidence"
},
new ChatMessage
{
Role = "user",
Content = prompt
}
},
ResponseFormat = ChatCompletionResponseFormat.Json
});

return JsonSerializer.Deserialize<ErrorAnalysis>(response.Choices[0].Message.Content);
}

private string BuildAnalysisPrompt(SentryEvent evt)
{
return $@"
Analyze this error and suggest a fix:

Error: {{evt.Message}}
Stack Trace: {{evt.Exception?.StackTrace}}
File: {{evt.Exception?.FileName}}
Line: {{evt.Exception?.LineNumber}}
Context: {{JsonSerializer.Serialize(evt.Contexts)}}
User: {{evt.User?.Username}}
Environment: {{evt.Environment}}

Codebase: ASP.NET Core 9.0, PostgreSQL, AWS Cognito

Provide:
1. Root cause analysis
2. Suggested fix with code changes
3. Confidence level (0-100)
";
}
}

AI Code Fix Generator

// Services/AICodeFixService.cs
public class AICodeFixService
{
public async Task<CodeFix> GenerateFixAsync(ErrorAnalysis analysis, string filePath)
{
var fileContent = await File.ReadAllTextAsync(filePath);

var prompt = $@"
Fix this error in the following code:

Error: {{analysis.ErrorSummary}}
Root Cause: {{analysis.RootCause}}
Suggested Fix: {{analysis.SuggestedFix}}

Current Code:
```csharp
{{fileContent}}

Return the fixed code with minimal changes. ";

var response = await _openAI.ChatCompletionAsync(/* ... */); return ParseCodeFix(response); } }


### Phase 4: GitHub Integration (Week 3)

#### Create GitHub Issue

```csharp
// Services/GitHubService.cs
public class GitHubService
{
private readonly GitHubClient _client;

public async Task<int> CreateIssueAsync(ErrorAnalysis analysis)
{
var issue = new NewIssue($"[Auto] {{analysis.ErrorSummary}}")
{
Body = FormatIssueBody(analysis),
Labels = new[] { "bug", "auto-generated", "ai-suggested" }
};

var created = await _client.Issue.Create("owner", "repo", issue);
return created.Number;
}

private string FormatIssueBody(ErrorAnalysis analysis)
{
var confidenceValue = analysis.Confidence.ToString();
var confidenceWithPercent = confidenceValue + "%";
return $@"
## Error Summary
{{analysis.ErrorSummary}}

## Root Cause
{{analysis.RootCause}}

## Suggested Fix
{{analysis.SuggestedFix}}

## Code Changes
```csharp
{{analysis.CodeChanges}}

Confidence

{{confidenceWithPercent}}


Auto-generated by AI error analysis "; } }


#### Create Pull Request

```csharp
public async Task<int> CreatePullRequestAsync(ErrorAnalysis analysis, int issueNumber)
{
// Create branch
var branchName = $"fix/auto-fix-{{issueNumber}}-{{DateTime.UtcNow:yyyyMMddHHmmss}}";
await CreateBranchAsync(branchName);

// Apply code changes
foreach (var change in analysis.CodeChanges)
{
await ApplyCodeChangeAsync(change.FilePath, change.OldCode, change.NewCode);
}

// Commit changes
await CommitChangesAsync($"Fix: {{analysis.ErrorSummary}}", branchName);

// Create PR
var pr = new NewPullRequest(
$"Auto-fix: {{analysis.ErrorSummary}}",
branchName,
"main")
{
Body = $@"
## Auto-Generated Fix

Closes #{issueNumber}

{{analysis.SuggestedFix}}

## Changes
{{FormatChanges(analysis.CodeChanges)}}

---
*Auto-generated by AI. Please review before merging.*
"
};

return await _client.PullRequest.Create("owner", "repo", pr).Number;
}

Phase 5: Complete Workflow (Week 4)

Sentry Webhook Configuration

  1. Configure Sentry Webhook:

    • Go to Sentry → Settings → Integrations → Webhooks
    • Add webhook URL: https://api.github.com/repos/owner/repo/dispatches
    • Select events: issue.created, error.created
  2. Sentry Alert Rules:

    • Create alert for new errors
    • Trigger webhook on error creation
    • Filter by environment, severity, etc.

Complete Workflow Script

// Workflows/AutoFixWorkflow.cs
public class AutoFixWorkflow
{
public async Task ExecuteAsync(SentryWebhookEvent evt)
{
// 1. Analyze error with AI
var analysis = await _aiService.AnalyzeErrorAsync(evt.Event);

// 2. Create GitHub issue
var issueNumber = await _githubService.CreateIssueAsync(analysis);

// 3. If confidence > 70%, generate fix
if (analysis.Confidence > 70 && analysis.HasFix)
{
// 4. Generate code changes
var codeFix = await _codeFixService.GenerateFixAsync(analysis);

// 5. Create PR
var prNumber = await _githubService.CreatePullRequestAsync(
analysis,
issueNumber);

// 6. Add comment to issue
await _githubService.AddCommentAsync(
issueNumber,
$"✅ Auto-fix PR created: #{prNumber}");
}
else
{
// Low confidence - just create issue
var confidenceText = analysis.Confidence.ToString() + "%";
await _githubService.AddCommentAsync(
issueNumber,
$"⚠️ AI confidence too low ({confidenceText}) for auto-fix. Manual review required.");
}
}
}

AI Prompt Engineering

Error Analysis Prompt Template

You are an expert .NET developer analyzing production errors.

Error Details:
- Message: {{error_message}}
- Type: {{error_type}}
- Stack Trace: {{stack_trace}}
- File: {{file_path}}
- Line: {{line_number}}
- Context: {{user_context, request_context}}

Codebase Context:
- Framework: ASP.NET Core 9.0
- Database: PostgreSQL
- Authentication: AWS Cognito
- Cloud: AWS (ECS, RDS)

Analyze this error and provide:
1. Root cause (1-2 sentences)
2. Error summary (brief)
3. Suggested fix (detailed explanation)
4. Code changes (if applicable)
5. Confidence level (0-100%)

Return JSON:
{
"error_summary": "...",
"root_cause": "...",
"suggested_fix": "...",
"code_changes": [
{
"file_path": "...",
"old_code": "...",
"new_code": "...",
"explanation": "..."
}
],
"confidence": 85
}

Code Fix Prompt Template

Fix this error in the following code:

Error: {{error_summary}}
Root Cause: {{root_cause}}

Current Code:
```csharp
{{current_code}}

Requirements:

  • Minimal changes
  • Follow existing code style
  • Add error handling if needed
  • Include comments explaining the fix

Return only the fixed code block.


## Configuration

### Environment Variables

```bash
# Sentry
SENTRY_DSN=https://your-dsn@sentry.io/project-id
SENTRY_ENVIRONMENT=production

# GitHub
GITHUB_TOKEN=ghp_...
GITHUB_OWNER=your-org
GITHUB_REPO=fishinglog-backend

# AI Service
OPENAI_API_KEY=sk-...
OPENAI_MODEL=gpt-4
AI_CONFIDENCE_THRESHOLD=70

# Webhook
SENTRY_WEBHOOK_SECRET=your-webhook-secret

Sentry Alert Rules

Create alerts in Sentry for:

  • New errors (any severity)
  • High-frequency errors (>10/hour)
  • Critical errors (severity: error, fatal)
  • Performance issues (slow queries, slow endpoints)

Best Practices

1. Error Filtering

Only auto-fix certain types of errors:

  • ✅ Null reference exceptions
  • ✅ Validation errors
  • ✅ Configuration errors
  • ❌ Security issues (manual review)
  • ❌ Payment-related errors (manual review)
  • ❌ Database connection errors (infrastructure)

2. Confidence Thresholds

  • High Confidence (>80%): Auto-create PR
  • Medium Confidence (60-80%): Create issue, suggest fix
  • Low Confidence (<60%): Create issue only, manual review

3. Code Review

Always require:

  • ✅ At least one human review before merge
  • ✅ Automated tests must pass
  • ✅ Code quality checks pass
  • ✅ No security vulnerabilities

4. Monitoring

Track:

  • Auto-fix success rate
  • AI confidence accuracy
  • Time saved vs manual fixes
  • False positives

Cost Estimation

Sentry

  • Free Tier: 5,000 events/month
  • Team Plan: $26/month (50,000 events)
  • Business Plan: Custom pricing

OpenAI API

  • GPT-4: ~$0.03 per error analysis
  • Estimated: 100 errors/month = $3/month
  • With code generation: ~$0.10 per fix = $10/month

GitHub Actions

  • Free: 2,000 minutes/month
  • Estimated: ~5 minutes per error = 200 errors/month free

Total Estimated Cost: ~$40-50/month

Security Considerations

  1. Don't auto-fix security issues - Always manual review
  2. Validate AI suggestions - Don't blindly apply fixes
  3. Limit scope - Only fix specific error types
  4. Require reviews - All PRs need human approval
  5. Monitor changes - Track what AI is changing

Alternative: Hybrid Approach

Option 1: Sentry + Custom AI Service

Use Sentry for error tracking, build custom AI service:

  • More control over AI prompts
  • Custom confidence thresholds
  • Integration with your workflow

Option 2: Sentry + GitHub Copilot

Use Sentry + GitHub Copilot:

  • Sentry creates issues
  • GitHub Copilot suggests fixes in PRs
  • Less automated, more human-in-the-loop

Option 3: Sentry + Cursor AI

Use Sentry + Cursor AI:

  • Sentry creates issues
  • Cursor AI analyzes and suggests fixes
  • Developer reviews and applies

Next Steps

  1. ✅ Set up Sentry (backend, web, mobile)
  2. ⬜ Configure Sentry webhooks
  3. ⬜ Build AI error analysis service
  4. ⬜ Create GitHub integration
  5. ⬜ Build code fix generator
  6. ⬜ Set up automated workflow
  7. ⬜ Test with sample errors
  8. ⬜ Monitor and refine

Resources


Last Updated: December 2025
Status: Strategy Document - Ready for Implementation
Recommended: Sentry + OpenAI + GitHub Actions