Error Monitoring & AI-Powered Auto-Fix Strategy
Comprehensive error monitoring strategy with AI integration for automated ticket creation and PR generation.
Executive Summary
Recommended Solution: Sentry with AI integration for:
- ✅ Error tracking and monitoring
- ✅ Automated GitHub issue creation
- ✅ AI-powered code fixes
- ✅ Automated PR generation
Tool Comparison
Sentry ⭐ RECOMMENDED
Pros:
- ✅ Excellent API for programmatic access
- ✅ Webhook support for real-time error notifications
- ✅ Built-in GitHub integration
- ✅ Rich error context (stack traces, breadcrumbs, user context)
- ✅ Works across backend, web, and mobile
- ✅ Performance monitoring included
- ✅ Session replay (paid feature)
- ✅ Great AI integration capabilities
- ✅ Free tier: 5,000 events/month
Cons:
- ⚠️ Can get expensive at scale
- ⚠️ Session replay requires paid plan
Best For:
- Error tracking with AI integration
- Automated workflows
- Multi-platform monitoring
- Performance monitoring
Pricing: Free tier → $26/month (Team) → Custom (Business)
LogRocket
Pros:
- ✅ Excellent session replay
- ✅ Great for frontend debugging
- ✅ User session recordings
- ✅ Network request monitoring
Cons:
- ❌ Limited API for automation
- ❌ Less suitable for backend error tracking
- ❌ No built-in GitHub integration
- ❌ More expensive
- ❌ Harder to integrate with AI workflows
Best For:
- Frontend-focused debugging
- User session analysis
- Visual debugging
Pricing: $99/month (Starter) → $249/month (Professional)
Application Insights (Azure)
Pros:
- ✅ Native Azure integration
- ✅ Good .NET support
- ✅ AI-powered insights
Cons:
- ❌ You're using AWS, not Azure
- ❌ Less flexible for custom workflows
- ❌ Limited GitHub integration
Best For:
- Azure-hosted applications
- Microsoft ecosystem
Pricing: Pay-as-you-go
Datadog
Pros:
- ✅ Full observability platform
- ✅ Excellent API
- ✅ Great for infrastructure monitoring
Cons:
- ❌ Expensive
- ❌ Overkill for error monitoring alone
- ❌ Complex setup
Best For:
- Full-stack observability
- Large-scale applications
Pricing: $31/month (Pro) → Custom (Enterprise)
Rollbar
Pros:
- ✅ Good API
- ✅ GitHub integration
- ✅ Simple setup
Cons:
- ❌ Less feature-rich than Sentry
- ❌ Smaller ecosystem
Best For:
- Simple error tracking
- Small teams
Pricing: Free → $19/month → Custom
Recommendation: Sentry
Why Sentry is the best choice for your use case:
- Excellent API - Perfect for AI integration
- Webhook Support - Real-time error notifications
- GitHub Integration - Built-in issue creation
- Rich Context - Stack traces, breadcrumbs, user info
- Multi-Platform - Backend (.NET), Web (React), Mobile (React Native)
- AI-Friendly - Easy to extract error data for AI processing
AI Integration Architecture
Workflow Overview
Error Occurs
↓
Sentry Captures Error
↓
Webhook Triggers → GitHub Actions / AWS Lambda
↓
AI Analyzes Error (OpenAI/Anthropic)
↓
Create GitHub Issue (with AI analysis)
↓
AI Generates Fix (with code changes)
↓
Create Pull Request (with fix)
↓
Review & Merge
Components
- Sentry - Error capture and monitoring
- Webhook Handler - Receives Sentry webhooks (GitHub Actions or AWS Lambda)
- AI Service - Analyzes errors and generates fixes (OpenAI/Anthropic)
- GitHub Integration - Creates issues and PRs
- Code Generator - Applies AI-generated fixes
Implementation Plan
Phase 1: Sentry Setup (Week 1)
Backend (.NET)
- Install Sentry SDK:
dotnet add package Sentry.AspNetCore
dotnet add package Sentry.EntityFramework
- Configure Sentry in
Program.cs:
using Sentry;
builder.WebHost.UseSentry(options =>
{
options.Dsn = builder.Configuration["Sentry:Dsn"];
options.Environment = builder.Environment.EnvironmentName;
options.TracesSampleRate = builder.Environment.IsProduction() ? 0.1 : 1.0;
options.SendDefaultPii = false; // Don't send PII
// Add user context
options.BeforeSend = (sentryEvent) =>
{
// Add custom context
sentryEvent.SetTag("service", "api");
return sentryEvent;
};
});
// Add Sentry to logging
builder.Logging.AddSentry();
- Add to
appsettings.json:
{
"Sentry": {
"Dsn": "https://your-dsn@sentry.io/project-id",
"Environment": "Development",
"TracesSampleRate": 1.0
}
}
- Add Sentry middleware:
app.UseSentryTracing();
Web App (React/Next.js)
- Install Sentry:
npm install @sentry/nextjs
- Initialize Sentry:
// sentry.client.config.ts
import * as Sentry from "@sentry/nextjs";
Sentry.init({
dsn: process.env.NEXT_PUBLIC_SENTRY_DSN,
environment: process.env.NODE_ENV,
tracesSampleRate: 1.0,
beforeSend(event, hint) {
// Add custom context
event.tags = {{ ...event.tags, service: "web" }};
return event;
},
});
Mobile App (React Native)
- Install Sentry:
npm install @sentry/react-native
- Initialize Sentry:
import * as Sentry from "@sentry/react-native";
Sentry.init({
dsn: process.env.SENTRY_DSN,
environment: __DEV__ ? "development" : "production",
tracesSampleRate: 1.0,
});
Phase 2: Webhook Setup (Week 1-2)
Option A: GitHub Actions (Recommended)
Create .github/workflows/sentry-webhook.yml:
name: Sentry Error Handler
on:
repository_dispatch:
types: [sentry-error]
jobs:
handle-error:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup .NET
uses: actions/setup-dotnet@v3
with:
dotnet-version: '9.0.x'
- name: Analyze Error with AI
id: analyze
run: |
# Call AI service to analyze error
# Returns: error_summary, suggested_fix, code_changes
- name: Create GitHub Issue
uses: actions/github-script@v6
with:
script: |
github.rest.issues.create({
owner: context.repo.owner,
repo: context.repo.repo,
title: `[Auto] ${{steps.analyze.outputs.error_summary}}`,
body: `## Error Details
${{steps.analyze.outputs.error_details}}
## Suggested Fix
${{steps.analyze.outputs.suggested_fix}}
## Code Changes
\`\`\`
${{steps.analyze.outputs.code_changes}}
\`\`\`
`,
labels: ['bug', 'auto-generated', 'ai-suggested']
});
- name: Create Pull Request
if: steps.analyze.outputs.has_fix == 'true'
run: |
# Create PR with AI-generated fix
Option B: AWS Lambda (Alternative)
Create Lambda function to handle Sentry webhooks:
// SentryWebhookHandler.cs
public class SentryWebhookHandler
{
public async Task<APIGatewayProxyResponse> Handle(SentryWebhookEvent evt)
{
// Analyze error with AI
var analysis = await AnalyzeErrorWithAI(evt);
// Create GitHub issue
await CreateGitHubIssue(analysis);
// Create PR if fix available
if (analysis.HasFix)
{
await CreatePullRequest(analysis);
}
return new APIGatewayProxyResponse { StatusCode = 200 };
}
}
Phase 3: AI Integration (Week 2-3)
AI Error Analysis Service
// Services/AIErrorAnalysisService.cs
public class AIErrorAnalysisService
{
private readonly IOpenAIService _openAI;
public async Task<ErrorAnalysis> AnalyzeErrorAsync(SentryEvent sentryEvent)
{
var prompt = BuildAnalysisPrompt(sentryEvent);
var response = await _openAI.ChatCompletionAsync(new ChatCompletionRequest
{
Model = "gpt-4",
Messages = new[]
{
new ChatMessage
{
Role = "system",
Content = @"You are an expert .NET developer. Analyze errors and suggest fixes.
Return JSON with: error_summary, root_cause, suggested_fix, code_changes, confidence"
},
new ChatMessage
{
Role = "user",
Content = prompt
}
},
ResponseFormat = ChatCompletionResponseFormat.Json
});
return JsonSerializer.Deserialize<ErrorAnalysis>(response.Choices[0].Message.Content);
}
private string BuildAnalysisPrompt(SentryEvent evt)
{
return $@"
Analyze this error and suggest a fix:
Error: {{evt.Message}}
Stack Trace: {{evt.Exception?.StackTrace}}
File: {{evt.Exception?.FileName}}
Line: {{evt.Exception?.LineNumber}}
Context: {{JsonSerializer.Serialize(evt.Contexts)}}
User: {{evt.User?.Username}}
Environment: {{evt.Environment}}
Codebase: ASP.NET Core 9.0, PostgreSQL, AWS Cognito
Provide:
1. Root cause analysis
2. Suggested fix with code changes
3. Confidence level (0-100)
";
}
}
AI Code Fix Generator
// Services/AICodeFixService.cs
public class AICodeFixService
{
public async Task<CodeFix> GenerateFixAsync(ErrorAnalysis analysis, string filePath)
{
var fileContent = await File.ReadAllTextAsync(filePath);
var prompt = $@"
Fix this error in the following code:
Error: {{analysis.ErrorSummary}}
Root Cause: {{analysis.RootCause}}
Suggested Fix: {{analysis.SuggestedFix}}
Current Code:
```csharp
{{fileContent}}
Return the fixed code with minimal changes. ";
var response = await _openAI.ChatCompletionAsync(/* ... */); return ParseCodeFix(response); } }
### Phase 4: GitHub Integration (Week 3)
#### Create GitHub Issue
```csharp
// Services/GitHubService.cs
public class GitHubService
{
private readonly GitHubClient _client;
public async Task<int> CreateIssueAsync(ErrorAnalysis analysis)
{
var issue = new NewIssue($"[Auto] {{analysis.ErrorSummary}}")
{
Body = FormatIssueBody(analysis),
Labels = new[] { "bug", "auto-generated", "ai-suggested" }
};
var created = await _client.Issue.Create("owner", "repo", issue);
return created.Number;
}
private string FormatIssueBody(ErrorAnalysis analysis)
{
var confidenceValue = analysis.Confidence.ToString();
var confidenceWithPercent = confidenceValue + "%";
return $@"
## Error Summary
{{analysis.ErrorSummary}}
## Root Cause
{{analysis.RootCause}}
## Suggested Fix
{{analysis.SuggestedFix}}
## Code Changes
```csharp
{{analysis.CodeChanges}}
Confidence
{{confidenceWithPercent}}
Auto-generated by AI error analysis "; } }
#### Create Pull Request
```csharp
public async Task<int> CreatePullRequestAsync(ErrorAnalysis analysis, int issueNumber)
{
// Create branch
var branchName = $"fix/auto-fix-{{issueNumber}}-{{DateTime.UtcNow:yyyyMMddHHmmss}}";
await CreateBranchAsync(branchName);
// Apply code changes
foreach (var change in analysis.CodeChanges)
{
await ApplyCodeChangeAsync(change.FilePath, change.OldCode, change.NewCode);
}
// Commit changes
await CommitChangesAsync($"Fix: {{analysis.ErrorSummary}}", branchName);
// Create PR
var pr = new NewPullRequest(
$"Auto-fix: {{analysis.ErrorSummary}}",
branchName,
"main")
{
Body = $@"
## Auto-Generated Fix
Closes #{issueNumber}
{{analysis.SuggestedFix}}
## Changes
{{FormatChanges(analysis.CodeChanges)}}
---
*Auto-generated by AI. Please review before merging.*
"
};
return await _client.PullRequest.Create("owner", "repo", pr).Number;
}
Phase 5: Complete Workflow (Week 4)
Sentry Webhook Configuration
-
Configure Sentry Webhook:
- Go to Sentry → Settings → Integrations → Webhooks
- Add webhook URL:
https://api.github.com/repos/owner/repo/dispatches - Select events:
issue.created,error.created
-
Sentry Alert Rules:
- Create alert for new errors
- Trigger webhook on error creation
- Filter by environment, severity, etc.
Complete Workflow Script
// Workflows/AutoFixWorkflow.cs
public class AutoFixWorkflow
{
public async Task ExecuteAsync(SentryWebhookEvent evt)
{
// 1. Analyze error with AI
var analysis = await _aiService.AnalyzeErrorAsync(evt.Event);
// 2. Create GitHub issue
var issueNumber = await _githubService.CreateIssueAsync(analysis);
// 3. If confidence > 70%, generate fix
if (analysis.Confidence > 70 && analysis.HasFix)
{
// 4. Generate code changes
var codeFix = await _codeFixService.GenerateFixAsync(analysis);
// 5. Create PR
var prNumber = await _githubService.CreatePullRequestAsync(
analysis,
issueNumber);
// 6. Add comment to issue
await _githubService.AddCommentAsync(
issueNumber,
$"✅ Auto-fix PR created: #{prNumber}");
}
else
{
// Low confidence - just create issue
var confidenceText = analysis.Confidence.ToString() + "%";
await _githubService.AddCommentAsync(
issueNumber,
$"⚠️ AI confidence too low ({confidenceText}) for auto-fix. Manual review required.");
}
}
}
AI Prompt Engineering
Error Analysis Prompt Template
You are an expert .NET developer analyzing production errors.
Error Details:
- Message: {{error_message}}
- Type: {{error_type}}
- Stack Trace: {{stack_trace}}
- File: {{file_path}}
- Line: {{line_number}}
- Context: {{user_context, request_context}}
Codebase Context:
- Framework: ASP.NET Core 9.0
- Database: PostgreSQL
- Authentication: AWS Cognito
- Cloud: AWS (ECS, RDS)
Analyze this error and provide:
1. Root cause (1-2 sentences)
2. Error summary (brief)
3. Suggested fix (detailed explanation)
4. Code changes (if applicable)
5. Confidence level (0-100%)
Return JSON:
{
"error_summary": "...",
"root_cause": "...",
"suggested_fix": "...",
"code_changes": [
{
"file_path": "...",
"old_code": "...",
"new_code": "...",
"explanation": "..."
}
],
"confidence": 85
}
Code Fix Prompt Template
Fix this error in the following code:
Error: {{error_summary}}
Root Cause: {{root_cause}}
Current Code:
```csharp
{{current_code}}
Requirements:
- Minimal changes
- Follow existing code style
- Add error handling if needed
- Include comments explaining the fix
Return only the fixed code block.
## Configuration
### Environment Variables
```bash
# Sentry
SENTRY_DSN=https://your-dsn@sentry.io/project-id
SENTRY_ENVIRONMENT=production
# GitHub
GITHUB_TOKEN=ghp_...
GITHUB_OWNER=your-org
GITHUB_REPO=fishinglog-backend
# AI Service
OPENAI_API_KEY=sk-...
OPENAI_MODEL=gpt-4
AI_CONFIDENCE_THRESHOLD=70
# Webhook
SENTRY_WEBHOOK_SECRET=your-webhook-secret
Sentry Alert Rules
Create alerts in Sentry for:
- New errors (any severity)
- High-frequency errors (
>10/hour) - Critical errors (severity: error, fatal)
- Performance issues (slow queries, slow endpoints)
Best Practices
1. Error Filtering
Only auto-fix certain types of errors:
- ✅ Null reference exceptions
- ✅ Validation errors
- ✅ Configuration errors
- ❌ Security issues (manual review)
- ❌ Payment-related errors (manual review)
- ❌ Database connection errors (infrastructure)
2. Confidence Thresholds
- High Confidence (
>80%): Auto-create PR - Medium Confidence (
60-80%): Create issue, suggest fix - Low Confidence (
<60%): Create issue only, manual review
3. Code Review
Always require:
- ✅ At least one human review before merge
- ✅ Automated tests must pass
- ✅ Code quality checks pass
- ✅ No security vulnerabilities
4. Monitoring
Track:
- Auto-fix success rate
- AI confidence accuracy
- Time saved vs manual fixes
- False positives
Cost Estimation
Sentry
- Free Tier: 5,000 events/month
- Team Plan: $26/month (50,000 events)
- Business Plan: Custom pricing
OpenAI API
- GPT-4: ~$0.03 per error analysis
- Estimated: 100 errors/month = $3/month
- With code generation: ~$0.10 per fix = $10/month
GitHub Actions
- Free: 2,000 minutes/month
- Estimated: ~5 minutes per error = 200 errors/month free
Total Estimated Cost: ~$40-50/month
Security Considerations
- Don't auto-fix security issues - Always manual review
- Validate AI suggestions - Don't blindly apply fixes
- Limit scope - Only fix specific error types
- Require reviews - All PRs need human approval
- Monitor changes - Track what AI is changing
Alternative: Hybrid Approach
Option 1: Sentry + Custom AI Service
Use Sentry for error tracking, build custom AI service:
- More control over AI prompts
- Custom confidence thresholds
- Integration with your workflow
Option 2: Sentry + GitHub Copilot
Use Sentry + GitHub Copilot:
- Sentry creates issues
- GitHub Copilot suggests fixes in PRs
- Less automated, more human-in-the-loop
Option 3: Sentry + Cursor AI
Use Sentry + Cursor AI:
- Sentry creates issues
- Cursor AI analyzes and suggests fixes
- Developer reviews and applies
Next Steps
- ✅ Set up Sentry (backend, web, mobile)
- ⬜ Configure Sentry webhooks
- ⬜ Build AI error analysis service
- ⬜ Create GitHub integration
- ⬜ Build code fix generator
- ⬜ Set up automated workflow
- ⬜ Test with sample errors
- ⬜ Monitor and refine
Resources
Last Updated: December 2025
Status: Strategy Document - Ready for Implementation
Recommended: Sentry + OpenAI + GitHub Actions